Influence of the Energy Levels on the Efficiency of Organic Bulk Heterojunction Solar Cells
نویسندگان
چکیده
We investigate the influence of the energy levels on the power conversion efficiency of a P3HT:PCBM and a MEH-PPV:PV bulk heterojunction cell. We calculate the upper-limit for the efficiency, and make realistic assumptions to predict efficiencies obtainable in the near future. The ideal position of the energy levels of donor and acceptor are obtained from these calculations, giving an idea how the ideal organic solar cell should look like. Also the expected efficiency gain by tuning energy levels, bandgap or absorption window can be derived from the simulations. Our calculations show that, for a bulk heterojunction cell with P3HT as donor, reaching efficiencies of 10 % is only possible by adapting the LUMO-level of the electron acceptor. Further, lowering the bandgap of the donor would only increase the efficiency if also the absorption window increases. We also demonstrate that MEH-PPV is not a good donor for organic solar cells, because of the high bandgap. The results indicate that, by changing the energy levels, organic cells could have the potential for reaching higher efficiencies , which is a necessity for future commercial applications.
منابع مشابه
Control over Power Conversion Efficiency of BHJ Solar Cells: Learn more from Less, with Artificial Intelligence
Harvesting the energy from the sun through the bulk heterojunction (BHJ) solar cells need materials with specific electronic characteristics. However, any promising material if cast improperly in cells will end into low or even null power conversion efficiency (PCE). Cell casting optimization is a time/material consumable step in any photovoltaic manufacturing practice. In this study, we sh...
متن کاملImprovement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study
By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...
متن کاملAdd-on for High Throughput Screening in Material Discovery for Organic Electronics: “Tagging” Molecules to Address the Device Considerations
This work reflects the worth of intelligent modeling in controlling the nanostructure morphology in manufacturing organic bulk heterojunction (BHJ) solar cells. It suggests the idea of screening the pool of material design possibilities inspired by machine learning. To fulfill this goal, a set of experimental data on a BHJ solar cell with a donor structure of diketopyrrolopyrrole (DDP) and ...
متن کاملHigh Efficiencies in Nanoscale Poly(3-Hexylthiophene)/Fullerene Solar Cells
A modified morphology was introduced for poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (BHJ) solar cells by thermal and solvent annealing treatments in the presence of hydrophilic-hydrophobic block copolymers. Power conversion efficiency (PCE) plummet was prohibited during both thermal and solvent treatments for all BHJ devices modified wit...
متن کاملEmpirical study of the characteristics of current-state organic bulk heterojunction solar cells
We studied and compared the reported characteristics of 22 different bulk heterojunction organic solar cells fabricated and characterized by different research institutes. We only considered bulk heterojunction solar cells where both the acceptor (the n-type) and the donor (the p-type) are organic. All cells were characterized under illumination with the standard A.M. 1.5 spectrum and an intens...
متن کامل